Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To broaden efforts for improving diversity, equity, and inclusion (DEI) in biomedical engineering (BME) education—a key area of emphasis is the integration of inclusive teaching practices. While BME faculty generally support these efforts, translating support into action remains challenging. This project aimed to address this need through a 3-phase inclusive teaching training, consisting of graduate students, faculty, and engineering education consultants. In Phase I, graduate students and faculty participated in a 6-week learning community on inclusive teaching (Foundational Learning). In Phase II, graduate students were paired with faculty to modify or develop new inclusive teaching materials to be integrated into a BME course (Experiential Learning). Phase III was the implementation of these materials. To assess Phases I & II, graduate student participants reflected on their experiences on the project. To assess Phase III, surveys were administered to students in IT-BME-affiliated courses as well as those taking other BME-related courses. Phases I & II: graduate students responded positively to the opportunity to engage in this inclusive teaching experiential learning opportunity. Phase III: survey results indicated that the incorporation of inclusive teaching practices in BME courses enhanced the student learning experience. The IT-BME project supported graduate students and faculty in learning about, creating, and implementing inclusive teaching practices in a collaborative and supportive environment. This project will serve to both train the next class of instructors and use their study of inclusive teaching concepts to facilitate the creation of ideas and materials that will benefit the BME curriculum and students.more » « less
-
Abstract Leveraging computational resources for modern physics education has become increasingly prevalent, especially catalyzed by the COVID-19 pandemic when distance learning is widely implemented. Herein, we report an open-source software for students and instructors to on-demand simulate optical reflection behaviors of one-dimensional photonic crystals (1D-PCs), a model system for understanding light–matter interactions relevant to materials science and optical physics. Specifically, our MATLAB application, ReflectSim, employs an adapted transfer matrix method simulation and can account for the effects of several critical material design parameters, including interfacial roughness and layer geometry, to determine the reflectance spectrum of user-defined 1D-PCs. By packing our codes into a graphical user interface, this software is simple to use and bypass the requirement of any coding experiences from users, which can be widely used as an education tool in high school/undergraduate classrooms and K-12 outreach activities. We believe that ReflectSim provides great potential for assisting students in understanding optical phenomenon in nanostructured layered materials and relevant scientific concepts through enabling more engaging learning experiences.more » « less
-
This submission was accepted for a special edition of Science Education and Civic Engagement: An International Journal focused on “Teaching Through Covid.” This submission was drawn from interviews, journals, and workshops of faculty participants and reviewed by the special edition editors prior to acceptance.more » « less
An official website of the United States government

Full Text Available